
Journal of Applied Mechanics and Technical Physics, Vol. 39, No. 3, 1998 

INVERSE P R O B L E M  OF W I N G  A E R O D Y N A M I C S  IN A S U P E R S O N I C  F L O W  

N. F. Vorob'ev UDC 533.69 

The inverse problem of wing aerodynamics - -  the determination of the lifting surface shape 
from a specified load - -  is solved within the framework of linear theory. Volterra's solution of the 
wave equation is used. Solutions are found in the class of bounded functions if certain conditions 
imposed on the governing parameters of the problem are satisfied. Solutions of inverse problems 
of supersonic flow are presented for an infinite-span wing, a triangular wing with completely 
subsonic edges, and a rectangular wing. 

The problems of inviscid supersonic flow around a thin slightly curved finite-span wing in a linear 
formulation reduce to solving the wave equation for the velocity potential with time-oriented data on the 
base plane. The Volterra representation of the solution of the wave equation allows one to choose either the 
normal derivative - -  the wing geometry (the direct aerodynamic problem) or the load function on the wing 
(the inverse aerodynamic problem) as the governing parameter on the base plane [1]. 

The solution of the inverse problem is presented as the potential 

r  = Y - f f  r162 - ~) d~. (t) 
s [ (z  - r  + y2 ]~ / (  x _ ~ )z  _ [ (z  - r  + y2] 

Here s is the domain of influence of the point M(z, y, z) on the base plane r/-- 0 and r r is the pressure 
difference on the plane ~ = 0. 

The velocity potential in the direct and inverse problems is written as double integrals whose integrands 
(the kernels of the integral operators) contain singularities. In finding the gas-dynamic flow parameters 
(the velocity-potential derivatives), the power of the integrand singularities increases, and, sometimes it is 
impossible to perform formal differentiation operations within the framework of bounded functions. In some 
cases, differentiation gives rise to singularities that make the integrals divergent. The method of recognizing 
the existence of integrals in the sense of Hadamard is often used [2]. The introduction of such symbols 
not only complicates implementation of the algorithms of solution but, sometimes, requires justification of 
physically absurd results. The observance of the rules of differentiation of integrals with vaxiable limits and 
the requirement of necessary smoothness on the wing surface allow one to obtain gas-dynamic parameters of 
the flow in the class of bounded functions [3, 4]. 

Based on the representation of the solution of the inverse problem of wing aerodynamics as potential 
(1), the dependence of the normal derivative ~ (the wing geometry) on the derivative ~ (the load on the 
wing) is determined from the formula [1, 4] 

COD s 

Here s ( M C A O B D M )  is the domain of influence of the point M(z, 0, z) on the base plane ~} = 0, r = f(~) 
is the equation of the line COD, which is the boundary between the domain s and the free stream (Fig. 1), 
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and ~ r  is the derivative of the load along the ~ axis. 
Formula (2) yields a solution of the inverse problem in quadratures if the governing parameters ~ and 

(~r are specified over the entire disturbed region on the plane ,7 = 0. In the region of the wing projection 
S and on its boundary L (including the section L0, at the supersonic leading edge AOB), ~ = p(~, (~) and 
r = P~(~' ~) should be defined according to the formulation of the inverse problem. In the region 5":. (a part 
of the disturbed region on the plane , /=  0 outside S) and on its boundary with the free stream (on the front 
characteristics AE and BF), we have r = ~ r  = 0. Thus, in formula (2), the integration is performed only 
over the part 8 E S (the dashed region in Fig. 1), and in the contour integral, the integration is performed 
only over the section L0. 

The kernels of the integral operators in (2) have singularities of the type of lim(1/(x - ~)). To obtain 

a solution of the inverse problem in the class of bounded functions, it is necessary to impose the following 
conditions on the governing parameters p(~, ~) and ~(~,  ~) specified in the region S + L [1, 4]. 

(1) Continuity of the load p(~, ~) over the entire disturbed region S + L. Since p(~, ~) = 0 in the region 
~, the condition p(~, ~) = 0 should be satisfied on the subsonic part of the wing leading edge L1 (the curves 
AA1 and BBI). 

(2) At the trailing edge of the wing (AIHB~), we have p(~,~) = 0 if it is subsonic, and no conditions 
are set for p(~, (~) if it is supersonic. 

(3) Continuity of the derivative ~(~,  (~) in the region S and its boundedness on L. 
After satisfaction of these necessary conditions for the existence of integrals in the class of bounded 

functions, a problem arises for their representation in elementary functions (the integrals should be reducible 
to tabulated integrals). This makes one specify the governing parameter of the problem p = p(~, ~) in the 
simplest form. 

The objective of the inverse problem for a wing of specified planform is to determine the wing surface 
shape.. According to the linearized nonpenetration condition ~ = uoo sin a ~ uoo tan a, where a = a(z, z) is 
the slope of the tangent line to the z axis in the cross section z = const, we have dy/d= - tan a for the point 
M(=, 0, z) E S. The derivative r is given by the relation @~ = F(=, z), where F(x, z) is the right-hand side 
of formula (2). Thus, the equation of the surface S is 

Z 

y(z, z) -- ~ F(~, z) d~. (3) 
zo 

Here z0 = f - ( z )  is the leading-edge coordinate in the cross section z - const. 
We give some examples of solution of the inverse problem (2) for wings of simple plan form. 
(1) The first test case is the solution for a wing of infinite span in the z direction (Fig. 2). In this 

case, the domain of influence of the point M lies entirely on the wing projection S, where the load ~} -- p(~) 
is specified. In formula (2), the contour integral along the curve COD disappears (~ -- 0), and the double 
integral vanishes because the flow is plane-parallel (@~r = 0). Thus, we obtain the following known relation 
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for an infinite-span wing: 

~;[~ffi0 = --  zl,ffi0 = --P(~)" (4) 

In the case of an infinite-span wing, the erroneous (see [4]) 1 solution of the inverse problem [2] used in 
the literature, 

= ~  �9 ;I,=o - , I ,=o + 

does not transform to the above relation (4). A double integral which should be understood in the sense of 
Hadamard is retained. 

In accordance with (2)-(4), the equation of the lifting line is 
X 

1 /p(~)  d~, 0 <~ x <~ 1. (5) 
Y -- Uoo 

0 
Figure 3 plots the lifting lines y = y(z) for various types of load obtained using formula (5): (a) constant 

load p = p0 and the lifting line is the plate y = - ( p o / u o o ) x ;  (b) linearly increasing load with a shockless 
entrance p = pox  and the lifting line is y = - ( p o / u o o ) x 2 / 2 ;  (c) load p = p,(1 - 2x) and the lifting lines are 
arcs that form the parabolic profile y = -4-(p, /uoo)x(1 - x); (d) the linearly increasing p = p , x  and linearly 
decreasing Pt = p,(1 - x) loads correspond to the arcs yn = - ( p , / u o o ) z 2 / 2  and  Yl = - ( p , / u o o ) ( z  - x2/2) 
which form a closed profile with constant pressure difference p! + I~  = P, over the entire length of this profile. 

(2) A triangular wing with entirely subsonic leading edges (Fig. 4) is loaded according to the law 
po (k?~2 2p0 p = ~ . ~  _r  p~=__ .~_r  ( ~ , r  O < k ~ < l .  (6) 

]The notation of the axes (y, r/) and (z, 0 in the figure of [4] should be interchanged. 
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Figure 5 shows schematically the surface p = p(~, r (OA] RB10).  The region S (the triangle OA1B] 0), 
which is the wing projection onto the base plane r/= 0, is bounded by the contour L: the leading edges of the 
projection are OA1 and OB1 (r = ~k~) and the trailing edge is AIB1 (~ = const). There is no contour integral 
in formula (2) for such a wing, since p = 0 for the leading characteristics OE and OF (~" = :[:~), according 
to the formulation of the problem. In the double integral, according to the formulation of the problem, the 
integration is performed only over the region S. Having performed all integration procedures imposed by 
formulas (2) and (3), we can write the equation for the surface y = y(x, z) of the triangular wing OAIB]O 
loaded according to formula (6): 

2p0 zSG(c, k), (7) y =  - - ~  

where 

+ 

1 ~k~/1_ c2 - 2 c2 C(C, k) -- (k 2 -- C 2) -- 7 [ -~ In 
I-[- Vfl-- c 2 

+ (k - -  c ) [ k 2 ( k  - c )  - 2(1 - k2)c] In ~/(1 - k2)(1 - c 2) + 1 - kc 

2k~/1-  k 2 (k - c) 

(k -[" c)[k2(k "}- c) -[" 2(1 - k 2 ) C ] 2 k v ~  - k 2 In ~(1 -- k2)(l - c2) "{" l"b k c , } ( ~  -I- c) , 0 < c ~  k <~ 1, 

c = z / x  is the ray in the base plane y = O, and k = z / z  is a ray that corresponds to the wing edge. 
The equation of the lateral edge of the wing (c = k) is 

y = ~ z  s 1 -  k 2 - 2 1 n  

The equation of the centerline (c = 0) is 

1[ 
y=--3----~-z 3 k----x i +  

1 + V / 1 -  k 2 2 In k ] .  

JY=T~ In 

~ =  

6/,0 ( b -  r 1 6 2  a) 

E: = = o, 

Here Fo is the leading characteristic line (Fig. 7a). 

In the case of the wing with subsonic edges (k = 1), the equation of the wing surface (7) takes the 
form 

y = - - T  x3 ( I - - c2 ) - -~  r In 

For the leading edges OAi and OBI (c - k -" I), we have y = 0, and for the centerline OK (c = 0, k = 1), 
we obtain 

2p0 ( 2 )  
y = - - - ~ - - z  3 1 -  . 

The wing supports the base plane y = 0 by the straight line edges OAI and OB1 (Fig. 6) and enters the flow, 
introducing no disturbances by the leading edges. 

(3) A rectangulax wing (Fig. 7a) is uniformly loaded in its root part, and the load on the wing panels 
ensures the required smoothness in conjugating loads in the regions S and E to obtain a solution in the class 
of bounded functions (Fig. 7b): 

s: 

P0 (b - C)213(~ " - a) -[- ( b -  r / 
(b - a) s a <~ r ~< b; 

J 

Fo: ~ = 0 .  
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For a wing with chord 2(b - a), where (b - a) is the spanwise length of the wing panel, there are 
seven domains (domains I-VII are separated by solid lines) with different types of analytical solution, which 
depends on the wing geometry and load distribution over the wing. The integration of singular integrals 
according to formulas (2) and (3), which is necessary to obtain an analytical equation of the wing surface, 
is a cumbersome procedure that requires special attention to singularities of the operators. The wing-surface 
equations obtained for domains I-VII reveal the characteristic features of the wing geometry, but they are 
not presented here because they are too cumbersome. 

Figure 7c and d shows the wing surface behavior in characteristic cross sections. The leading edge 
(~ = 0) remains rectilinear on the wing panel (a <~ ( ~ b). In the cross section ~ = b - a, the wing is 
"adjusted" to the pressure distribution specified on the wing panel, beginning from the point of intersection 
with the characteristic that emerges from the point (~ = 0, r = a). The root cross section (r = 0), where the 
pressure is constant (p = p0) and the influence of the wing panel is absent, is a straight line (the wing surface 
in domain I is a plate). At the end face (~ = b), the wing is "inscribed" into the free stream and does not 
introduce disturbances by the comer point (~ = 0, ~ = b). 
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